If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-24x-105=0
a = 1; b = -24; c = -105;
Δ = b2-4ac
Δ = -242-4·1·(-105)
Δ = 996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{996}=\sqrt{4*249}=\sqrt{4}*\sqrt{249}=2\sqrt{249}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-2\sqrt{249}}{2*1}=\frac{24-2\sqrt{249}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+2\sqrt{249}}{2*1}=\frac{24+2\sqrt{249}}{2} $
| 6n+5.50n=51 | | 22=-2(-3-y) | | x+(x+20)+(7x-10)=180 | | 12g+6=12g+9 | | 0.5x-1/2=3.7+x | | -8(x+2)-9x=-2(x-7) | | 4=8+p/3 | | 2(4x-1)=8-2x | | 8x-19=5x+5 | | -(3-7n)+6(2n-1)=16-2n+5 | | 6^(x^2-16x)=36^(3x) | | 4x-9=21x+8 | | 1/4x+3=3/4x-7 | | 11w-15w=12 | | 14x-2=7x+14 | | X/15+x/10=1/6 | | x^2=8/3x+105/9 | | 2(t+6)=10 | | 6=-3(2x-9) | | (x-10)-(-5x+2)=x-10+5x-2= | | 7/x=21/9 | | 17-(3x+8)=3 | | 6(x-3)-3(2x+1)=4(2x+1)-23 | | 0.4x-2.5=-0.6x+0.2 | | M+2/3=3m/7 | | 5/6+1/6=x-18 | | -2(m-4)=-10+4m | | 6-12x-1=8x-5 | | 2(2t)^2+5=0 | | 2(4-3m)=50 | | 3/4x+5/2=x/3+5/3 | | -2x-15=8 |